anonymous
  • anonymous
Find the range of values for p for whih the roots of the roots of the equation x^2 + (2p +1)x = 3 - p^2 are not real. State the range of values for p for which the roots are real.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
in order for evaluate the range of values for p for which roots are real : Discriminant of quadratic must be non-negative
anonymous
  • anonymous
\[x^2+(2p+1)x+p^2-3=0\]\[\Delta=(2p+1)^2-4\times1\times(p^2-3)=4p+13\]
anonymous
  • anonymous
and one more thing : in order for evaluate the range of values for p for which roots are not real : Discriminant of quadratic must be negative or \(\Delta<0\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oh thanks so much i realised that i made a mistake when i tried to work this out, i put 3-p^2 instead of p^-3!
anonymous
  • anonymous
oh ok :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.