anonymous
  • anonymous
write the equation of a line and a plane that intersect at the point (1,4,-1)? pleassseee help the textbook gives an answer of x+2y+5z-4=0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You can pick any line, any plane. Let's say I want my line's direction to be parallel to the vector \((1,1,0)\). Then we can write a vector-valued function that describes the line: \(\mathbf{r}(t)=(1,4,-1)+t(1,1,0)\quad\implies x=1+t,y=4+t,z=-1\). Now, let's say I want my plane orthogonal to the line. This means the direction vector will be our plane's normal. Recall that any vector lying in the plane must be orthogonal to the normal, and any point in the plane yields a vector from \((1,4,-1)\) pointing towards it:$$\mathbf{x}=(x,y,z)\\\mathbf{x}_0=(1,4,-1)\\(\mathbf{x}-\mathbf{x}_0)\cdot(1,1,0)=0\\(x-1)+(y-4)=0\\x+y-5=0$$ Said plane and line intersect at one and only one point.$$1+t+4+t-5=0\\2t=0\\t=0$$... which corresponds to our point \(\mathbf{r}(0)=(1,4,-1)\).
anonymous
  • anonymous
Well said @oldrin.bataku !
anonymous
  • anonymous
thank you!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.