anonymous
  • anonymous
expand xy2 +cos xy upto fourth degree terms using maclaurin’s series
Linear Algebra
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
$$f(x,y)=xy^2+\cos xy\\f_x(x,y)=y^2-y\sin xy\\f_y(x,y)=2xy-x\sin xy\\f_{xx}(x,y)=-y^2\cos xy\\f_{yy}(x,y)=2x-x^2\cos xy\\f_{xy}(x,y)=2y-\sin xy-xy\cos xy\\f_{xxx}(x,y)=y^3\sin xy\\f_{yyy}(x,y)=x^3\sin xy\\f_{xxy}(x,y)=-2y\cos xy+xy^2\sin xy\\f_{xyy}(x,y)=2-2x\cos xy+x^2y\sin xy\\f_{xxxx}(x,y)=y^4\cos xy\\f_{yyyy}(x,y)=x^4\cos xy\\f_{xxyy}(x,y)=x^2y^2\cos xy+4xy\sin xy-2\cos xy\\f_{xxxy}(x,y)=xy^3\cos xy+3y^2\sin xy\\f_{xyyy}(x,y)=3x^2\sin xy+x^3y\cos xy$$ Notice we take advantage of symmetry of mixed partials. Observe so far that at \((0,0)\)$$f=1\\f_x=0\\f_y=0\\f_{xx}=0\\f_{xy}=0\\f_{yy}=0\\f_{xxx}=0\\f_{xxy}=0\\f_{xyy}=2\\f_{yyy}=0\\f_{xxxx}=0\\f_{xxxy}=0\\f_{xxyy}=-2\\f_{xyyy}=0\\f_{yyyy}=0$$Now let's work on our power series expansion: $$\begin{align*}f(x,y)\approx &f\\+&(xf_x+yf_y)\\+&\frac12\left(x^2f_{xx}+2xyf_{xy}+y^2f_{yy}\right)\\+&\frac16\left(x^3f_{xxx}+3x^2yf_{xxy}+3xy^2f_{xyy}+y^3f_{yyy}\right)\\+&\frac1{24}\left(x^4f_{xxxx}+4x^3yf_{xxxy}+6x^2y^2f_{xxyy}+4xy^3f_{xyyyy}+y^4f_{yyyy}\right)\end{align*}$$Plugging in our values, we find:$$f(x,y)\approx1+xy^2-\frac12x^2y^2$$
anonymous
  • anonymous
The easy way, however, is just to use our well-known expansions:$$\cos xy=1-\frac12(xy)^2+\frac1{24}(xy)^4-\dots\approx1-\frac12x^2y^2$$Then we just add to our polynomial (which is its own power series expansion):$$f(x,y)\approx1+xy^2-\frac12x^2y^2$$

Looking for something else?

Not the answer you are looking for? Search for more explanations.