Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

deepakrf

  • one year ago

expand xy2 +cos xy upto fourth degree terms using maclaurin’s series

  • This Question is Closed
  1. oldrin.bataku
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    $$f(x,y)=xy^2+\cos xy\\f_x(x,y)=y^2-y\sin xy\\f_y(x,y)=2xy-x\sin xy\\f_{xx}(x,y)=-y^2\cos xy\\f_{yy}(x,y)=2x-x^2\cos xy\\f_{xy}(x,y)=2y-\sin xy-xy\cos xy\\f_{xxx}(x,y)=y^3\sin xy\\f_{yyy}(x,y)=x^3\sin xy\\f_{xxy}(x,y)=-2y\cos xy+xy^2\sin xy\\f_{xyy}(x,y)=2-2x\cos xy+x^2y\sin xy\\f_{xxxx}(x,y)=y^4\cos xy\\f_{yyyy}(x,y)=x^4\cos xy\\f_{xxyy}(x,y)=x^2y^2\cos xy+4xy\sin xy-2\cos xy\\f_{xxxy}(x,y)=xy^3\cos xy+3y^2\sin xy\\f_{xyyy}(x,y)=3x^2\sin xy+x^3y\cos xy$$ Notice we take advantage of symmetry of mixed partials. Observe so far that at \((0,0)\)$$f=1\\f_x=0\\f_y=0\\f_{xx}=0\\f_{xy}=0\\f_{yy}=0\\f_{xxx}=0\\f_{xxy}=0\\f_{xyy}=2\\f_{yyy}=0\\f_{xxxx}=0\\f_{xxxy}=0\\f_{xxyy}=-2\\f_{xyyy}=0\\f_{yyyy}=0$$Now let's work on our power series expansion: $$\begin{align*}f(x,y)\approx &f\\+&(xf_x+yf_y)\\+&\frac12\left(x^2f_{xx}+2xyf_{xy}+y^2f_{yy}\right)\\+&\frac16\left(x^3f_{xxx}+3x^2yf_{xxy}+3xy^2f_{xyy}+y^3f_{yyy}\right)\\+&\frac1{24}\left(x^4f_{xxxx}+4x^3yf_{xxxy}+6x^2y^2f_{xxyy}+4xy^3f_{xyyyy}+y^4f_{yyyy}\right)\end{align*}$$Plugging in our values, we find:$$f(x,y)\approx1+xy^2-\frac12x^2y^2$$

  2. oldrin.bataku
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    The easy way, however, is just to use our well-known expansions:$$\cos xy=1-\frac12(xy)^2+\frac1{24}(xy)^4-\dots\approx1-\frac12x^2y^2$$Then we just add to our polynomial (which is its own power series expansion):$$f(x,y)\approx1+xy^2-\frac12x^2y^2$$

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.