anonymous
  • anonymous
Suppose x is a normally distributed random variable with μ = 14 and σ =2. Find each of the following probabilities. a. P (x ≥ 14.5) b. P (x ≤ 11) c. P (14.42 ≤ x ≤ 19.46) d. P (9.12 ≤ x ≤ 16.77)
Statistics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
a. P(x ≥14.5) = 1-P(x≤14.5) =1-P(z≤(14.5-14)/2) =1-P(z≤0.25) =1-0.59871 (using normal table) = 0.50129 I'll try to do the others next.
anonymous
  • anonymous
b. P(x≤11) = P(z≤(11-14)/2) =P(z≤-1.5) =1- 0.93319 (-ve so do 1 minus) = 0.06671
anonymous
  • anonymous
c. Split into P(x ≥14.42) - P(x ≤19.46) =P(z ≥ (14.42-14)/2) - P(z ≤ (19.46-1)/2) =P(z ≥ 0.21) - P(z ≤ 2.73) =0.58317 + 0.99683 - =0.58

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
d. P(x ≥ 9.12) - P(x ≤ 16.77) =P(z ≥ -2.44) - P(z ≤ 1.385) =0.99266 + 0.91774 - 1 =0.07492
anonymous
  • anonymous
actually that last line should be 0.9104
anonymous
  • anonymous
Thank you. I have another one with different numbers. Sorry I didnt get a chance to solve the first one.

Looking for something else?

Not the answer you are looking for? Search for more explanations.