amorfide
  • amorfide
How do I integrate
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amorfide
  • amorfide
|dw:1370820901585:dw|
amorfide
  • amorfide
I know it is by parts, but I can't get the right answer
anonymous
  • anonymous
$$\int xe^{x^2}\,\mathrm{d}x$$We can let \(u=x^2\) and thus \(\mathrm{d}u=2x\,\mathrm{d}x\), which we rearrange to read \(\dfrac12\mathrm{d}u=x\,\mathrm{d}x\). We may now replace:$$\int\color{red}xe^{\color{blue}{x^2}}\color{red}{\,\mathrm{d}x}=\color{red}{\frac12}\int e^{\color{blue}u}\,\color{red}{\mathrm{d}u}$$Can you tackle this?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amorfide
  • amorfide
I understand that you have u in the power of e, but where did the x infront of the e go?
amorfide
  • amorfide
nvm stupid question
amorfide
  • amorfide
let me try to integrate this
anonymous
  • anonymous
http://en.wikipedia.org/wiki/Gaussian_integral You would not want to integrate by parts because \(\int e^{x^2}\,\mathrm{d}x\) has no elementary result (see: imaginary error function http://en.wikipedia.org/wiki/Error_function).
amorfide
  • amorfide
|dw:1370821441041:dw| is this right?
amorfide
  • amorfide
+ c
anonymous
  • anonymous
yep :-)
anonymous
  • anonymous
My link broke: http://en.wikipedia.org/wiki/Error_function

Looking for something else?

Not the answer you are looking for? Search for more explanations.