anonymous
  • anonymous
What angle is theta? When the two vectors are perpendicular?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
huh?
anonymous
  • anonymous
the angle when 2 lines are perpindicular will always be 90 degrees if thats what u are asking
anonymous
  • anonymous
|dw:1370841536021:dw|This is the \(\theta\) used in the dot product formula. It's the smallest angle between the two vectors.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1370841617177:dw| \[x = a| \times |b| \times \cos(θ)\]]
anonymous
  • anonymous
$$\mathbf{u}\cdot\mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$$If our vectors are perpendicular, that means \(\theta=\pi/2\), and we know \(\cos\pi/2=0\) hence our dot product will also be \(0\):$$\mathbf{u}\cdot\mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\|(0)=0$$
anonymous
  • anonymous
So x = zero?
anonymous
  • anonymous
@oldrin.bataku
anonymous
  • anonymous
If they're perpendicular, their cosine is \(0\) and thus their dot product \(x\) is also \(0\).
anonymous
  • anonymous
|dw:1370841854559:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.