anonymous
  • anonymous
Determine the volume of the solid obtained by rotating about the y-axis the region under the graph of the curve y=ln x over the interval [1, e]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dan815
  • dan815
hi!
dan815
  • dan815
my DEAR FIEND OF A FrIEND
dan815
  • dan815
|dw:1370852735479:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

dan815
  • dan815
first tell me if u understand the bounds
dan815
  • dan815
ln e = 1, so u know upper value for y = 1 and ln 1 = 0 , so lower y value = 0
dan815
  • dan815
and that function y = ln x if i write in terms of x then x = e^y
dan815
  • dan815
hey are you there!! i want to teach you this stuff!! its really awesome!! INTEGRATION IS FUN
dan815
  • dan815
ok fine ill just write it out all by myself T_T|dw:1370853112463:dw|
anonymous
  • anonymous
Medal for the comment \[Integration * Is * Fun\]
dan815
  • dan815
so we must just add all these infintesimally small cylinder volumes between 0 and 1 |dw:1370853349835:dw|
dan815
  • dan815
lol
anonymous
  • anonymous
|dw:1370853527029:dw|
dan815
  • dan815
|dw:1370853503324:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.