anonymous
  • anonymous
the definite integral of ln(1+t^2) from (sqrt(1-x) to 0)
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Jhannybean
  • Jhannybean
\[\large \int\limits_{\sqrt{1-x}}^{0}\ln(1+t^2)dt\]integration by parts. \[\large{u= \ln(1+t^2)\quad\quad\quad dv= dt \\du =\frac{2t}{1+ t^2}dt\quad\quad\quad v=t}\]\[\large t \ln(1+t^2)-\int\limits t*(\frac{2t}{1+t^2})dt\]evaluate integral first. \[\large -\int\limits \frac{2t^2}{1+t^2}dt =- 2 \int\limits \frac{t^2}{1+t^2}dt\]Use long division to break down the stuff inside the integral. As shown here. http://www.sketchtoy.com/37477197\[\large -2 \int\limits (1-\frac{1}{1+t^2})dt\]\[\large -2 \ [\int\limits\limits dt - \int\limits\limits (\frac{1}{1+t^2})dt ]=-2t +2\tan^{-1}(t) \] Combine it with the other part \[\large t \ln(1+t^2)-[-2t+2\tan^{-1}(t)]\]\[\huge t \ln(1+t^2)+2t-2\tan^{-1}(t)]_{\sqrt{1-x}}^{0}\]\[\large 0 - [\sqrt{1-x}* \ln(2-x)+2\sqrt{1-x}-2\tan^{-1}(\sqrt{1-x})]\]\[\large -\sqrt{1-x}* \ln(2-x-2\sqrt{1-x}+2\tan^{-1}(\sqrt{1-x})\]
anonymous
  • anonymous
@Jhannybean avoid using \(*\) in place of \(\cdot\), \(\times\), or just implicitly signifying multiplication like $$-\sqrt{1-x}\log\left(2-x-2\sqrt{1-x}+2\arctan\sqrt{1-x}\right)$$
anonymous
  • anonymous
\(*\) is used to denote an operation called convolution often.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jhannybean
  • Jhannybean
idk howto do the dot!!!! :(
Jhannybean
  • Jhannybean
It's so frustrating ~.~
anonymous
  • anonymous
$$\cdot=\text{\cdot}$$
Jhannybean
  • Jhannybean
Thanks :D haha. That made my life a whole lot easier....\[ \bf \cdots \ \text{winning!!} \cdots\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.