anonymous
  • anonymous
Which matrix equation can be used to solve the system? Will draw it.
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
|dw:1370965723891:dw|
amistre64
  • amistre64
Ax = b x = A^(-1) b might be one of the options
amistre64
  • amistre64
they was nice enough to give you a determinant of 1 ... how sweet

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i have 4 answers
amistre64
  • amistre64
the answers might help us determine a suitable soluton process
anonymous
  • anonymous
|dw:1370966096557:dw|
amistre64
  • amistre64
ax + by = n cx + cy = m matrix A = a b c d vector b = n m so yeah, they are looking for an inverse setup
anonymous
  • anonymous
|dw:1370966191827:dw|
amistre64
  • amistre64
do you recall how to find the inverse of a 2x2 matrix?
amistre64
  • amistre64
the shorcut involves a swap and some negations, youll also need a determinant
anonymous
  • anonymous
never mind I found it out, thx anyways
amistre64
  • amistre64
\[\begin{pmatrix}a&b\\c&d\end{pmatrix}^{-1}=\begin{pmatrix}d/|A|&-b/|A|\\-c/|A|&a/|A|\end{pmatrix}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.