anonymous
  • anonymous
Ramona deposited $4,190.51 into a savings account with an interest rate of 5.2% compounded twice a year. About how long will it take for the account to be worth $9,000?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jdoe0001
  • jdoe0001
http://www.openbookproject.net/books/bpp4awd/_images/compound_interest.png
jdoe0001
  • jdoe0001
so as you can see from the above formula, what is required is to "solve" or to find "t" so the A or "balance" will be 9000 4,190.51 is the principal, or starting amount from the rate is 5.2% or 5.2/100 = 0.052 the "n" period per year is 2, since it's being compounded twice a year so now $$ 9000 = 4190.51\pmatrix{1+\cfrac{0.052}{2}}^{2t}\\ \cfrac{9000}{4190.51}=\pmatrix{1+\cfrac{0.052}{2}}^{2t}\\ 2.15 = 1.026^{2t}\\ -----------------\\ \text{use log cancellation rule}\\ \color{blue}{log_{1.026}} (2.15) = \color{blue}{log_{1.026}}(1.026^{2t})\\ \color{blue}{log_{1.026}}(2.15) = 2t\\ -----------------\\ \text{using log change of base rule}\\ \cfrac{log_{10} (2.15)}{log_{10}(1.026)} = 2t $$ now all you need to do is solve for "t" :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.