anonymous
  • anonymous
Identify the coordinates of any local extreme values of the function f(x) and classify each as either a local maximum or minimum.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\huge f(x)= e^{x ^{2}}\]
anonymous
  • anonymous
\[f(x)= (2x)ex^2\]
Koikkara
  • Koikkara
@AravindG @amistre64 ....might help u better than i do....

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

AravindG
  • AravindG
Use 2nd derivative test.
anonymous
  • anonymous
How do i find the variables ?
AravindG
  • AravindG
first equate f'(x) to 0 .Then find the critical points
anonymous
  • anonymous
|dw:1371009397272:dw|
anonymous
  • anonymous
How i can rearrange in such a way that i can find the CP
anonymous
  • anonymous
just - infinity?
dan815
  • dan815
no its at 0
dan815
  • dan815
and only 0
anonymous
  • anonymous
how would i solve for y then?
anonymous
  • anonymous
just sub o ?
dan815
  • dan815
cuz its 2x*e^x2
dan815
  • dan815
u know itll be 0 when the term u multiply by = 0
dan815
  • dan815
now u just need to check when e^x^2 will be zero, and see if that works too but it doesnt
dan815
  • dan815
because e^x^2 cannot have a negative exponent, and e^-inf = 0 so its not possible to have a - inf
dan815
  • dan815
only imaginary solution
dan815
  • dan815
|dw:1371010525019:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.