anonymous
  • anonymous
which is not an identity?
Trigonometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\tan^2x = \sec^2x - \sin^2x - \cos^2x\]
anonymous
  • anonymous
\[\frac{ 1+\cos^2 x }{ \sin^2 x }=1\]
anonymous
  • anonymous
\[(cosx + sinx)^2 = 1 + 2cosx sinx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[(tanx + cotx)^2 = \csc^2 x + \sec^2 x\]
cwrw238
  • cwrw238
numbers 2 and 3 are identities
cwrw238
  • cwrw238
the first one may be does it equal sec^2 x = 1 + tan^2 x
cwrw238
  • cwrw238
oops sin^2 x = 1 - cos^2 x so what can you say about number 2?
cwrw238
  • cwrw238
i was wrong - can you see why?
cwrw238
  • cwrw238
I was wrong about number 2
anonymous
  • anonymous
so it is not an identity?
cwrw238
  • cwrw238
right because sin^2 x = 1 - cos^2 x NOT 1 + cos^2 x so 1 + cos^2 x ---------- cannot be equal to 1 for all values of x sin^2 x
cwrw238
  • cwrw238
an identity is true for all values of the variable - that is its definition

Looking for something else?

Not the answer you are looking for? Search for more explanations.