A community for students.
Here's the question you clicked on:
 0 viewing
Mad_e13
 one year ago
find a quadratic equation having 3 + or  root 3 as roots
Mad_e13
 one year ago
find a quadratic equation having 3 + or  root 3 as roots

This Question is Closed

dan815
 one year ago
Best ResponseYou've already chosen the best response.0u want an equation with roots 3 or sqrt3 ?

dan815
 one year ago
Best ResponseYou've already chosen the best response.0so work backwards from factor form

amistre64
 one year ago
Best ResponseYou've already chosen the best response.1when given a set of roots: {r1,r2,r3,...,rn} you can set up a poly by subtracting x from each root: (r1x)(r2x)(r3x)...(rnx)

dan815
 one year ago
Best ResponseYou've already chosen the best response.0oh wait u mean 3+/root3

whpalmer4
 one year ago
Best ResponseYou've already chosen the best response.0@dan815 2 roots, this is a quadratic, so \(x= 3\pm\sqrt{3}\)

dan815
 one year ago
Best ResponseYou've already chosen the best response.0multiply em out and get ur equation

amistre64
 one year ago
Best ResponseYou've already chosen the best response.1or \[x=\frac{b\pm\sqrt{b^24ac}}{2a}\] \[x=\frac{3\pm\sqrt{3}}{1}\] a = 1/2 b = 3 94c = 3 c = 6/4 \[\frac12x^23x+\frac64\] \[2x^212x+6\]

amistre64
 one year ago
Best ResponseYou've already chosen the best response.1ugh ... i did a=1 in my determinant :/

amistre64
 one year ago
Best ResponseYou've already chosen the best response.194c/2 = 3 92c = 3 c = 3

amistre64
 one year ago
Best ResponseYou've already chosen the best response.11/2 x^2 3x +3 x^2 6x + 6 sounds better
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.