anonymous
  • anonymous
differntiate w.r.t. x cos(acosx +bsinx) for some constant a,b.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1371114953648:dw|
anonymous
  • anonymous
please type it .. cant get u really ..
anonymous
  • anonymous
-sin(acosx+bsinx)(asinx+bcosx)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
how ???
anonymous
  • anonymous
Chain rule
anonymous
  • anonymous
oh yes .. thank u .. got it .. tak those latter things as angle and again differentiate.. thanks a lot .
Jhannybean
  • Jhannybean
Chain rule.\[\large \frac{d}{dx}f(g(x)) \cdot \frac{d}{dx}g(x)\]
anonymous
  • anonymous
Anytime @tanjeetsarkar96 :) Good luck with your future studies of the gospel of mathematics!
Jhannybean
  • Jhannybean
=_=...
Jhannybean
  • Jhannybean
If your equation looks complicated, like the one stated, substitue a variable in there to solve it easier. \[\large {u= acos(x)+bsin(x) \\ du= -asin(x)+bcos(x)}\]\[\large \frac{d}{dx}\cos(u) \cdot \frac{d}{dx}(u)\] Does that help...? haha.
Jhannybean
  • Jhannybean
Why is this question still up?...

Looking for something else?

Not the answer you are looking for? Search for more explanations.