anonymous
  • anonymous
Simplify
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
ajprincess
  • ajprincess
if the bases are same u can add the exponents. As u can see the base is x and it is similar to all three. Jst add the exponents while keeping the base same. Does that help? @selenamalter
anonymous
  • anonymous
\[-1-\frac{7}{8}+\frac{1}{8}\] is your exponent

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
um, ok, 7/8
anonymous
  • anonymous
no i don't think so
anonymous
  • anonymous
that is a \(-\frac{7}{8}\) in the exponent, right?
anonymous
  • anonymous
right
anonymous
  • anonymous
so your job is to compute \(-1-\frac{7}{8}+\frac{1}{8}\) maybe easiest to first compute \(\frac{1}{8}-\frac{7}{8}=-\frac{6}{8}=-\frac{3}{4}\)
anonymous
  • anonymous
then finally compute \(-1-\frac{3}{4}\)
anonymous
  • anonymous
you get \[-1-\frac{3}{4}=-\frac{4}{4}-\frac{3}{4}=-\frac{7}{4}\]
anonymous
  • anonymous
oh okay, so i think it would be B
1 Attachment
anonymous
  • anonymous
no definitely not B
anonymous
  • anonymous
\[\large x^{-\frac{7}{4}}=\frac{1}{x^{\frac{7}{4}}}=\frac{1}{\sqrt[4]{x^7}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.