anonymous
  • anonymous
2^x=4^x+1 help and thanx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
whpalmer4
  • whpalmer4
\[2^x=4^x+1\] or \[2^x=4^{x+1}\]?
anonymous
  • anonymous
second one
whpalmer4
  • whpalmer4
Okay, if you remember \((ab)^n = a^nb^n\) and \(2*2=4\) we can rewrite the right hand side of the equation like this: \[2^x = (2*2)^{x+1} = 2^{x+1}*2^{x+1}\]Can you do it from there?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i dont think so @whpalmer4
whpalmer4
  • whpalmer4
Okay. \[2^x = 2^{x+1}*2^{x+1}\]Doesn't that imply that \[x = x+1+x+1\]? When we multiply exponentials with the same base, we add the exponents...all of these have the same base, so that means the sum of the exponents on the left equals the sum of the exponents on the right. Surely you can solve that last equation?

Looking for something else?

Not the answer you are looking for? Search for more explanations.