Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

\[\int (1+y^2)^\frac{5}{2} dy\] How to start?

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

$$\int(1+y^2)^{5/2}\,dy=\int\left(\sqrt{1+y^2}\right)^5dy$$Now recognize this looks ready to use a trig substitution on:$$y=\tan\theta\implies dy=\sec^2\theta\ d\theta\\\int\left(\sqrt{1+\tan^2\theta}\right)^5\,dy=\int\sec^2\theta\left(\sqrt{\sec^2\theta}\right)^5\,d\theta=\int\sec^7\theta\,d\theta$$
But that doesn't look good :(
It's the best you're going to get...

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@Loser66 expanding a fractional power requires the generalized binomial theorem and results in an infinite series
That's probably the best, thanks! :(
@RolyPoly there are standard techniques to use here. Break into the product of powers of \(\sec^2\theta\) and tear stuff away.
I know. I just couldn't believe that I have to change the into into trigo again, since I just got this from an trigo integral (\(\int csc^7x dx\)) :( Thanks again!
Huh? that's weird @RolyPoly
* \(-\int csc^7 x dx\) \[-\int csc^7 x dx\]\[=- \int (1+cot^2x)^\frac{5}{2}csc^2xdx\]\[=\int (1+cot^2x)^\frac{5}{2}d(cot x)\]\[=\int (1+y^2)^\frac{5}{2}dy\]
@Loser66 actually brought something interesting and useful!$$\int(1+y^2)^2\sqrt{1+y^2}\,dy=\int(1+2y^2+y^4)\sqrt{1+y^2}\,dy$$Distribute and try integrating by term.
hyperbolic substitution ... let y = sinh(u) \[ \int \cosh^5(u) \cosh u du = \int \cosh^6 u du = \frac{1}{2^6}\int (e^u + e^{-u})^6 du\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question