anonymous
  • anonymous
Find the critical points of the function f(x,y)=x^3-6xy+3y^2-24x+4 Also classify them in Relative Maxima, Relative Minima and Saddle Points.
MIT 18.02 Multivariable Calculus, Fall 2007
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
First find the first partial derivatives (fx) and the first partial derivative (fy). fx= 3x^2-6y-24=0 fy=-6x+6y=0 From these two equations you find the two critical points which are (-2,-2) and (4,4) After that you use the second derivative test (D=fxxfyy-(fxy)^2) In the case of (-2,-2) D<0 and so it is a saddle point. In the case (4,4) D>0 and fxx<0 and so it is a minimum point
anonymous
  • anonymous
Thank you very much...

Looking for something else?

Not the answer you are looking for? Search for more explanations.