goformit100
  • goformit100
Show that there are infinitely many primes of the form 4n+3.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
goformit100
  • goformit100
@qweqwe123123123123111 @dan815 @Zarkon
anonymous
  • anonymous
Is this where you have 1+2+3+. . . +4n+3?
anonymous
  • anonymous
well, assume there are only finite then show that if you combine all (4n+3) primes together, and probably add/subtract 1, you create a new prime not in your list thus, there must be infinite primes

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
But in this case it would 1,3,5,7,11,13,17 and so on.
goformit100
  • goformit100
ok
anonymous
  • anonymous
like, for instance, assume 4n+3 only holds true for values n <= 10 however, if you combine the numbers 4n+3 together, you notice you will (eventually) create another prime larger than n<=100, meaning there must be more primes beyond n <=100
anonymous
  • anonymous
woops, the two last 100's should be 10s
goformit100
  • goformit100
Thankyou

Looking for something else?

Not the answer you are looking for? Search for more explanations.