anonymous
  • anonymous
help me solve 14-4y < (with the line) 66 a) y >(with the line ) -13 b) y >-17 c) y> (with the line)-17 d)y >-13
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
add 4y to both sides
johnweldon1993
  • johnweldon1993
\[14 - 4y \le66\] add 4y to both sides.....then subtract 66 from both sides....and finally divide both sides by 4...what do you get?
johnweldon1993
  • johnweldon1993
We do this to isolate 'y' because that is what we are solving for \[14 - 4y \le 66\] after adding 4y to both sides we have \[14 \le 66 + 4y\] then we subtract 66 from both sides \[-52 \le 4y\] and we finally divide both sides by 4 to completely isolate 'y' \[\frac{ -52 }{ 4 } \le \frac{ 4y }{ 4 }\] simplified down a bit \[y \ge \frac{ -52 }{ 4 }\] so what does that equate to?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
-13
anonymous
  • anonymous
so its a
johnweldon1993
  • johnweldon1993
Right it simplifies down to \[y \ge -13\] So yes...answer choice A :)
anonymous
  • anonymous
thank you (:
johnweldon1993
  • johnweldon1993
anytime! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.