anonymous
  • anonymous
f(x) = e^(1/x) / (1+ e^(1/x)) except x=0 and 0 if x=0 find whether f(x) is continuous
Calculus1
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[f(x) = \frac{e^{1/x}}{ 1+ e^{1/x} }, if x \neq 0\]
anonymous
  • anonymous
check if the right and the left limit exists and are defined, and if the limits are equal tot he functional value at x=0, then it is continuous at x=0.
anonymous
  • anonymous
does the left limit exists?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
no idea if we apply limit for e^(1/x) then it will be e^infinity which is equal to inifinity but f(0)=0. Therefore f(0) neq to limit, hence it is discontinuous at x=0. Not sure whether my solution is correct or not??
anonymous
  • anonymous
left limit=0, right limit=1 hence both the limits exists, but are not equal. If at all there exists a functional value, it is of no use, because left limit is not equal to right limit to check the continuity of the function. hence, the function is discontinuous at x=0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.