Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Please help: Find all solutions to the equation. sin^2(x) + sin (x) = 0

Precalculus
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

ok u know that\[\sin 2x=2 \sin x\cos x\]so equation becomes\[2 \sin x\cos x+\sin x=0\]take out common factor\[\sin x(2\cos x+1)=0\]using zero product property\[\sin x=0\]or\[2\cos x+1=0\]
but the equation is sin^2(x)
oh sorry\[\sin^2 x+\sin x=0\]take out common factor\[\sin x(\sin x+1)=0\]easier :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\sin x=0\]or\[\sin x=-1\]
makes sense?
a little but i dont know how to get the solutions
u start like this: Let x be sin(x) and x^2+x=0 x(x+1)=0 then, x=0; & x=-1 sin is at radian -3/4pi and pi
u substitute x value in sin(x) and -1 is co-terminal (270) angle and 0

Not the answer you are looking for?

Search for more explanations.

Ask your own question