Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Express the complex number in trigonometric form. -4

Precalculus
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

The standard form for a complex number is: \[a+ib\] or \[x+iy\] where: "a" and "x" are the real parts of the complex number, and; "b" and "y" being the imaginary part of the complex number. when you want to find the trigonometric form you're looking for the mod-arg form: \[Rcis\theta=R(\cos\theta + i\sin\theta)\] Where R is the modulus of the complex number; "cos(theta)" being the real part; "sin(theta)" being the imaginary part, and; "theta" being the argument of the complex number. For your example being -4. We should find the the modulus first using the Phythagorean formula: \[R=\sqrt{a^2+b^2}\] \[=\sqrt{(-4)^2+0^2}\] \[=\sqrt{16}\] \[=4\] Now you should find the angle or argument of -4. Use this graph to find the angle you're looking for: |dw:1371802552197:dw| Then you can connect all the information you gathered- the modulus (the distance) and the argument (the angle); so now you can put all that into the mod-arg form given to you by me.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question