fozia
  • fozia
can anyone tell me the Use the linear approximation of the function f(x)=arctan(e3x) at x=0 to estimate the value of f(0.01).
Calculus1
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Find the equation of the tangent line of f(x) at x = 0 and evaluate f(0.01) using the tangent line. Do you know how to perform these steps? @fozia
fozia
  • fozia
im trying
anonymous
  • anonymous
btw, is that e^3x?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

fozia
  • fozia
yes it is
anonymous
  • anonymous
Ok let's first find the equation of the tangent line. To do this, I will need the slope of the line and a point. To get a point, we find f(0):\[\bf f(0)=\arctan(1)=\frac{ \pi }{ 4}\]So the tangent goes through the point \(\bf (0, \frac{\pi}{4})\). Now to find the slope of the tangent, we evaluate f'(x) at x = 0:\[\bf f'(x)=\frac{ 3e^{3x} }{ 1+e^{6x} } \rightarrow f'(0)=\frac{ 3e^0 }{ 1+e^0 }=3\]So now we have a point and the slope of tangent line. We will use the slope-intercept form (you can use point-slope form as well but I find slope-intercept form easier) to get the tangent line's equation:\[\bf y = mx+b \rightarrow y = 3x + b\]Plug in the point for 'x' and 'y':\[\bf \frac{\pi}{4}=3(0)+b \implies b = \frac{\pi}{4}\]So the equation of the tangent line is:\[\bf g(x)=3x+\frac{\pi}{4}\]Here I called the tangent line g(x). Now to find the linear approximation of f(0.01), we plug in x = 0.01 in to our equation of the tangent line and evaluate:\[\bf g(0.01)=3(0.01) + \frac{\pi}{4} \approx 0.815\]Therefore: \(\bf f(0.01) \approx 0.815\) @fozia
fozia
  • fozia
oh grt thank you so much

Looking for something else?

Not the answer you are looking for? Search for more explanations.