consider the differential equation: x^3(x^2-1)^2(x^2+1)y''+(x+1)xy'+y=0. determine whether x=0 is a regular singular point. determine whether x=1 is a regular singular point. are there any regular singular points that are complex numbers? justify conclusions

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

consider the differential equation: x^3(x^2-1)^2(x^2+1)y''+(x+1)xy'+y=0. determine whether x=0 is a regular singular point. determine whether x=1 is a regular singular point. are there any regular singular points that are complex numbers? justify conclusions

Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[x ^{3}(x^2-1)^2(x^2+1)y''+(x-1)xy'+y=0\]
the answers I got for this one were 0, 1, and i, but I'm not sure how to justify them. Are those even right to begin with?
if you know this one, please answer, but I'm going to write the other one since I'm having more trouble with it.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

First, rewrite it in standard form:$$y''+\frac{x(x-1)}{x^3(x^2-1)^2(x^2+1)}y+\frac1{x^3(x^2-1)^2(x^2+1)}y=0$$
To see if \(x=0\) is ordinary, we see if the coefficients of \(y'\) and \(y\) are analytic at \(x=0\); as you can see, \(y',y\) are not analytic therefore \(x=0\) is singular.
To determine whether it is regular, we consider whether \(xp(x),x^2q(x)\) are analytic at \(x=0\) where \(p(x),q(x)\) are the coefficients of \(y',y\) respectively. Observe that neither \(xp(x),x^2q(x)\) are analytic at \(x=0\) (there is at least one factor of \(x\) remaining in the denominator) thus this is an irregular singular point.
for the above I meant the coefficients of \(y',y\) were not singular:$$y''+\underbrace{\frac{x(x-1)}{x^3(x^2-1)^2(x^2+1)}}_{p(x)}y+\underbrace{\frac1{x^3(x^2-1)^2(x^2+1)}}_{q(x)}y=0$$Note that we can simplify \(p(x)\):$$p(x)=\frac{x-1}{x^2(x^2-1)^2(x^2+1)}$$which unfortunately is still not analytic at \(x=0\). Thus it is a singular point. Observe that \(xp(x)\) is also not analytic:$$xp(x)=\frac{x-1}{x(x^2-1)^2(x^2+1)}$$thus \(x=0\) is an irregular singular point.
For \(x=1\), consider simplifying \(p(x)\) a little more:$$p(x)=\frac{x-1}{x^2(x^2-1)(x^2-1)(x^2+1)}=\frac1{x^2(x+1)(x^2-1)(x^2+1)}$$yet unfortunately it is still not analytic at \(x=1\)
Similarly consider \((x-1)p(x)\):$$(x-1)p(x)=\frac{x-1}{x^2(x+1)(x^2-1)(x^2+1)}=\frac1{x^2(x+1)^2(x^2+1)}$$which is analytic at \(x=1\)! Now, check \((x-1)^2q(x)\):$$(x-1)^2q(x)=\frac{(x-1)^2}{x^3(x^2-1)^2(x^2+1)}=\frac1{x^3(x+1)^2(x^2+1)^2}$$which is also analytic at \(x=1\) hence \(x=1\) is a regular singular point
To determine whether there are complex singular points, observe the roots of our denominator of \(p(x)\):$$x^2(x+1)(x^2-1)(x^2+1)=0$$we observe we have singularities at \(x^2+1=0\) i.e. \(x=\pm i\). To determine whether they're regular, consider whether \((x-i)p(x),(x+i)p(x)\) still have the singular point:$$(x-i)p(x)=\frac{x-i}{x^2(x+1)^2(x^2+1)}=\frac1{x^2(x+1)^2(x+i)}\\(x+i)p(x)=\frac{x+i}{x^2(x+1)^2(x^2+1)}=\frac1{x^2(x+1)^2(x-i)}$$nope! Since \(q(x)\)'s denominator has the same root with the same multiplicity you can conclude \((x\pm i)q(x)\) will also be analytic at \(x=\pm i\). Hence \(x=\pm i\) are regular singular points.

Not the answer you are looking for?

Search for more explanations.

Ask your own question