anonymous
  • anonymous
\[\frac{1}{5}\int \frac{-x^3+2x^2-3x+4}{x^4-x^3+x^2-x+1}dx\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@hartnn If you don't mind giving a hand here...
anonymous
  • anonymous
@RolyPoly Man i'm sorry but i can't find the answer... ive been tryin for the past 20 mins
anonymous
  • anonymous
I'd suggest partial fractions, but I don't know if that'd get you anywhere with this one.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@SithsAndGiggles i tried but just got a mess
anonymous
  • anonymous
Where there's a will, there's a way! :D
FoolAroundMath
  • FoolAroundMath
\(\text{Denominator = } 1-x+x^2-x^3+x^4 = (1+x^5)/(1+x)\) \[ \implies \frac{1}{5}\int\frac{5-(1-x+x^2-x^3+x^4)}{x^5+1}dx=\int\frac{-1}{5(x+1)}+\frac{1}{x^5+1}dx\] Hope this helps
anonymous
  • anonymous
The problem is I get this integral from \(\int \frac{1}{x^5+1}dx\)... \[\int \frac{1}{x^5+1}dx=\int ( \frac{1}{5(x+1)} + \frac{(-x^3 + 2x^2 - 3x + 4)}{5(x^4-x^3+x^2-x+1)})dx\]
anonymous
  • anonymous
If you change it back to \(\int \frac{1}{x^5+1}dx\), then, how can I solve this integral?
anonymous
  • anonymous
@FoolAroundMath
amistre64
  • amistre64
not real sure how this would help, but this is an idea im trying to play with \[\frac{\sum_{0}^{4}(-1)^n(4-n)x^n}{\sum_{0}^{4}(-1)^n~5~x^n}\] \[\frac{\sum_{0}^{4}(-1)^n4~x^n-\sum_{0}^{4}n~x^n}{\sum_{0}^{4}(-1)^n~5~x^n}\] \[\frac{\sum_{0}^{4}(-1)^n4~x^n}{\sum_{0}^{4}(-1)^n~5~x^n}-\frac{\sum_{0}^{4}n~x^n}{\sum_{0}^{4}(-1)^n~5~x^n}\]
amistre64
  • amistre64
when I simply do the division, i get a series representation of:\[\sum_0~(-1)^n(4x^{5n}+x^{5n+1}-x^{5n+2}+x^{5n+3}-x^{5n+4})\]
anonymous
  • anonymous
@amistre64, I like your idea of using the pattern of coefficients. I also don't know if it helps, but I like the idea nonetheless.
amistre64
  • amistre64
thnx, its was either that or try to figure out what the wolf did :) http://www.wolframalpha.com/input/?i=integrate+%284-3x%2B2x%5E2-x%29%2F%285%281-x%2Bx%5E2-x%5E3%2Bx%5E4%29%29+dx I recall hearing that a power series solution is a solution; and if its an important enough solution, they give it a name ;)
anonymous
  • anonymous
lol forget it http://www.wolframalpha.com/input/?i=\frac{1}{5}\int+\frac{-x^3%2B2x^2-3x%2B4}{x^4-x^3%2Bx^2-x%2B1}dx
anonymous
  • anonymous
\[\frac{\sum_{0}^{4}(-1)^n(4-n)x^n}{\sum_{0}^{4}(-1)^n~5~x^n}\]\[=\frac{\sum_{0}^{4}(-1)^n(4)x^n-(-1)^nnx^n}{\sum_{0}^{4}(-1)^n~5~x^n}\]Is this step correct?
anonymous
  • anonymous
i am not sure you are going to find a nice closed form for this you can integrate term by term if you expand \(\frac{1}{1+x^5}\) as a power series start with \[\frac{1}{1+x}=1-x+x^2-x^3+...\] and then replace \(x\) by \(x^5\) and get \[\frac{1}{1+x^5}=1-x^5+x^{10}-...\] and i guess you can integrate that term by term
anonymous
  • anonymous
gives \[x-\frac{x^6}{6}+\frac{x^{11}}{11}-...\]
anonymous
  • anonymous
Hmm... Is \[\frac{\sum_{0}^{4}(-1)^n(4-n)x^n}{\sum_{0}^{4}(-1)^n~5~x^n}=\frac{\sum_{0}^{4}(-1)^n(4)x^n-(-1)^nnx^n}{\sum_{0}^{4}(-1)^n~5~x^n}\]correct?

Looking for something else?

Not the answer you are looking for? Search for more explanations.