anonymous
  • anonymous
Identify the 42nd term of an arithmetic sequence where a1 = -12 and a27 = 66
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
i keep coming up with 126 but my options are 70,72,111,114. PLEASE HELP
anonymous
  • anonymous
|dw:1372218335949:dw|
Jhannybean
  • Jhannybean
\[\large a_{n}= a_{1}+(n-1)d\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
r=3
anonymous
  • anonymous
111
anonymous
  • anonymous
find r and then just plug in that first equation
Jhannybean
  • Jhannybean
\[\large 66 =-12+(27-1)d \]\[\large 66= -12 +26d\]\[\large 78 = 26d\]\[\large d= 3\] \[\large a_{42} = -12 + 3(42-1)\]\[\large a_{42} = -12 + 123\]\[\large a_{42} = 111\]
anonymous
  • anonymous
i have no idea what i was doing wrong... but thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.