kaylala
  • kaylala
(3^2n times a^3)^2 = ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
hmm does it have choices? my answer is 9a^6n but i could be wrong
kaylala
  • kaylala
\[(3^{4n}a ^{3})^{2^{}} = ???\]
anonymous
  • anonymous
ok sorry i was wrong

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

kaylala
  • kaylala
@TjRoDz you're wrong...
anonymous
  • anonymous
uhh 81a^6n
kaylala
  • kaylala
still wrong @TjRoDz
anonymous
  • anonymous
hhhaha my pea sized brain
kaylala
  • kaylala
help me please @thomaster
thomaster
  • thomaster
uhm i think \(\sf\Large a^6\large3^{\Large8n}\)
thomaster
  • thomaster
\(\Large (a^n)^m=a^{n*m}\)
kaylala
  • kaylala
wont it be instead of 3 it would be squared and be 9?
kaylala
  • kaylala
@thomaster wont it be: instead of 3; it would be squared and be 9?
kaylala
  • kaylala
i'm confused
thomaster
  • thomaster
No \(\Large(3^{4n}a ^3)^2\) 4*2=8 and 3*2=6 \(\Large3^{8n}a ^6~\to~a^63^{8n}\)
phi
  • phi
you can memorize the rule \[ (x^a)^b = x^{ab} \] which means multiply the exponents but you can use this idea: \[ x^2 \text{ means } x \cdot x \] so \[ (3^{4n}a ^{3})^{2} \text{ means } (3^{4n}a ^{3})(3^{4n}a ^{3}) \]
phi
  • phi
you can re-arrange that to \[ (3^{4n}\cdot 3^{4n}\cdot a ^{3}\cdot a ^{3})\]
phi
  • phi
if you don't know about "adding exponents" you could figure out \[ a^3 \cdot a^3 \] by knowing that \(a^3 = a\cdot a \cdot a \) \[ a^3 \cdot a^3 = a\cdot a \cdot a \cdot a\cdot a \cdot a= a^6\]
phi
  • phi
but to do \[ 3^{4n} \cdot 3^{4n} \] you need to know the rule: if you have the same base, add the exponents \[ 3^{4n+4n} \] or \[3^{8n} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.