A community for students. Sign up today!
Here's the question you clicked on:
 0 viewing

This Question is Closed

TjRoDz
 one year ago
Best ResponseYou've already chosen the best response.0hmm does it have choices? my answer is 9a^6n but i could be wrong

kaylala
 one year ago
Best ResponseYou've already chosen the best response.0\[(3^{4n}a ^{3})^{2^{}} = ???\]

kaylala
 one year ago
Best ResponseYou've already chosen the best response.0@TjRoDz you're wrong...

TjRoDz
 one year ago
Best ResponseYou've already chosen the best response.0hhhaha my pea sized brain

kaylala
 one year ago
Best ResponseYou've already chosen the best response.0help me please @thomaster

thomaster
 one year ago
Best ResponseYou've already chosen the best response.1uhm i think \(\sf\Large a^6\large3^{\Large8n}\)

thomaster
 one year ago
Best ResponseYou've already chosen the best response.1\(\Large (a^n)^m=a^{n*m}\)

kaylala
 one year ago
Best ResponseYou've already chosen the best response.0wont it be instead of 3 it would be squared and be 9?

kaylala
 one year ago
Best ResponseYou've already chosen the best response.0@thomaster wont it be: instead of 3; it would be squared and be 9?

thomaster
 one year ago
Best ResponseYou've already chosen the best response.1No \(\Large(3^{4n}a ^3)^2\) 4*2=8 and 3*2=6 \(\Large3^{8n}a ^6~\to~a^63^{8n}\)

phi
 one year ago
Best ResponseYou've already chosen the best response.2you can memorize the rule \[ (x^a)^b = x^{ab} \] which means multiply the exponents but you can use this idea: \[ x^2 \text{ means } x \cdot x \] so \[ (3^{4n}a ^{3})^{2} \text{ means } (3^{4n}a ^{3})(3^{4n}a ^{3}) \]

phi
 one year ago
Best ResponseYou've already chosen the best response.2you can rearrange that to \[ (3^{4n}\cdot 3^{4n}\cdot a ^{3}\cdot a ^{3})\]

phi
 one year ago
Best ResponseYou've already chosen the best response.2if you don't know about "adding exponents" you could figure out \[ a^3 \cdot a^3 \] by knowing that \(a^3 = a\cdot a \cdot a \) \[ a^3 \cdot a^3 = a\cdot a \cdot a \cdot a\cdot a \cdot a= a^6\]

phi
 one year ago
Best ResponseYou've already chosen the best response.2but to do \[ 3^{4n} \cdot 3^{4n} \] you need to know the rule: if you have the same base, add the exponents \[ 3^{4n+4n} \] or \[3^{8n} \]
Ask your own question
Ask a QuestionFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.