Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

....help in derivatives using delta method

Calculus1
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
|dw:1372321232477:dw|
lagyan mo ng pwet
tapos yung mukha mo lagay mo sa tae yun

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

You know, right now my math brain is fried! I will tag some folks! @ParthKohli @mathslover @mathstudent55 give him a hand please
\[f(x)=\sqrt[3]{x}\\ f'(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\] Is this the "delta" method you're referring to?
The definition of a derivative is\[f'(x) = \lim_{h \to 0} \dfrac{f(x + h) - f(x)}{h}\]Now suppose that \(f(x) = \sqrt[3]{x}\)
@Parthkohli I already know the formula please show me the solution and process ...pls..
Hint...He can only show you the process not the solution
\[\lim_{h \to 0} \dfrac{(x + h)^{1/3} - x^{1/3}}{h}\]I think you can use a binomial series to expand \((x + h)^{1/3}\)
@ParthKohli, I've seen this exact problem done with a substitution, but I forget the details. Something like \(u^3=x\), I think.
Oh
what do you mean by binomial series...please show me the whole process in finding the answer...@Parthkohli
Sorry, yes, you can use a substitution.
please help me
I believe it goes something like this: Substitute \[u^3=x~\iff~u=\sqrt[3]x\\ t^3=x+h~\iff~t=\sqrt[3]{x+h}\] Notice that \[\begin{align*}\color{green}{t^3-u^3}&=(t-u)(t^2+tu+u^2)\\ &=\color{red}{\left(\sqrt[3]{x+h}-\sqrt[3]x\right)}\color{blue}{\left((\sqrt[3]{x+h})^2-(\sqrt[3]{x+h})(\sqrt[3]x)+(\sqrt[3]x)^2\right)} \end{align*}\] The red part is what we have in the numerator in the limit. So in the limit, you have to multiply the numerator and denominator by the blue part: \[\lim_{h\to0}\frac{\sqrt[3]{x+h}-\sqrt[3]x}{h}\cdot\frac{(\sqrt[3]{x+h})^2-(\sqrt[3]{x+h})(\sqrt[3]x)+(\sqrt[3]x)^2}{(\sqrt[3]{x+h})^2-(\sqrt[3]{x+h})(\sqrt[3]x)+(\sqrt[3]x)^2}\] I'm going to rewrite the radicals as exponents: \[\lim_{h\to0}\frac{(x+h)^{1/3}-x^{1/3}}{h}\cdot\frac{(x+h)^{2/3}-(x+h)^{1/3}x^{1/3}+x^{2/3}}{(x+h)^{2/3}-(x+h)^{1/3}x^{1/3}+x^{2/3}}\] Using the fact (green part above) that \(t^3-u^3=(x+h)-x=h\), the limit is reduced to \[\lim_{h\to0}\frac{h}{h((x+h)^{2/3}-(x+h)^{1/3}x^{1/3}+x^{2/3})}\\ \lim_{h\to0}\frac{1}{(x+h)^{2/3}-(x+h)^{1/3}x^{1/3}+x^{2/3}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question