anonymous
  • anonymous
....help in derivatives using delta method
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1372321232477:dw|
anonymous
  • anonymous
lagyan mo ng pwet
anonymous
  • anonymous
tapos yung mukha mo lagay mo sa tae yun

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
help @snuggielad
SnuggieLad
  • SnuggieLad
You know, right now my math brain is fried! I will tag some folks! @ParthKohli @mathslover @mathstudent55 give him a hand please
anonymous
  • anonymous
\[f(x)=\sqrt[3]{x}\\ f'(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\] Is this the "delta" method you're referring to?
ParthKohli
  • ParthKohli
The definition of a derivative is\[f'(x) = \lim_{h \to 0} \dfrac{f(x + h) - f(x)}{h}\]Now suppose that \(f(x) = \sqrt[3]{x}\)
anonymous
  • anonymous
@mathstudent55
anonymous
  • anonymous
@Parthkohli I already know the formula please show me the solution and process ...pls..
SnuggieLad
  • SnuggieLad
Hint...He can only show you the process not the solution
anonymous
  • anonymous
@koikkara
ParthKohli
  • ParthKohli
\[\lim_{h \to 0} \dfrac{(x + h)^{1/3} - x^{1/3}}{h}\]I think you can use a binomial series to expand \((x + h)^{1/3}\)
anonymous
  • anonymous
@uri
anonymous
  • anonymous
@thomaster
anonymous
  • anonymous
@ParthKohli, I've seen this exact problem done with a substitution, but I forget the details. Something like \(u^3=x\), I think.
ParthKohli
  • ParthKohli
Oh
anonymous
  • anonymous
what do you mean by binomial series...please show me the whole process in finding the answer...@Parthkohli
ParthKohli
  • ParthKohli
Sorry, yes, you can use a substitution.
anonymous
  • anonymous
please help me
anonymous
  • anonymous
I believe it goes something like this: Substitute \[u^3=x~\iff~u=\sqrt[3]x\\ t^3=x+h~\iff~t=\sqrt[3]{x+h}\] Notice that \[\begin{align*}\color{green}{t^3-u^3}&=(t-u)(t^2+tu+u^2)\\ &=\color{red}{\left(\sqrt[3]{x+h}-\sqrt[3]x\right)}\color{blue}{\left((\sqrt[3]{x+h})^2-(\sqrt[3]{x+h})(\sqrt[3]x)+(\sqrt[3]x)^2\right)} \end{align*}\] The red part is what we have in the numerator in the limit. So in the limit, you have to multiply the numerator and denominator by the blue part: \[\lim_{h\to0}\frac{\sqrt[3]{x+h}-\sqrt[3]x}{h}\cdot\frac{(\sqrt[3]{x+h})^2-(\sqrt[3]{x+h})(\sqrt[3]x)+(\sqrt[3]x)^2}{(\sqrt[3]{x+h})^2-(\sqrt[3]{x+h})(\sqrt[3]x)+(\sqrt[3]x)^2}\] I'm going to rewrite the radicals as exponents: \[\lim_{h\to0}\frac{(x+h)^{1/3}-x^{1/3}}{h}\cdot\frac{(x+h)^{2/3}-(x+h)^{1/3}x^{1/3}+x^{2/3}}{(x+h)^{2/3}-(x+h)^{1/3}x^{1/3}+x^{2/3}}\] Using the fact (green part above) that \(t^3-u^3=(x+h)-x=h\), the limit is reduced to \[\lim_{h\to0}\frac{h}{h((x+h)^{2/3}-(x+h)^{1/3}x^{1/3}+x^{2/3})}\\ \lim_{h\to0}\frac{1}{(x+h)^{2/3}-(x+h)^{1/3}x^{1/3}+x^{2/3}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.