• anonymous
Using the given zero, find all other zeros of f(x). -2i is a zero of f(x) = x^4 - 45x^2 - 196
  • schrodinger
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • cwrw238
+2i is also a solution dividing 4 into 196 gives 49 so it looks like 7 and -7 may be roots plugging these values gives 7^4 - 45*49 - 196 = 0
  • cwrw238
roots are 7,-7,-2i, 2i
  • cwrw238
i ought to explain some more about the above; complex roots exist as pairs if a + bi is a root then the other is a - bi thats why +2i is another root of your equation to find the other roots i used the rational root theorem the factors of 196 are +/-1, +/- 2, +/-4, +/-7, +/-14, +/-28, +/- 49 and are possible roots i was lucky that i guessed it might be +7 and -7 first an equation in x^4 will have 4 roots , if some are complex there will be 2 of them

Looking for something else?

Not the answer you are looking for? Search for more explanations.