Imagine that you are swinging back and forth a chain with a locket on the end. Assuming that you are on Earth so that gravity is constant at 9.81 meters/secondĀ², and you know that the chain is 43 centimeters long, what is the period of this simple pendulum? A. 13 seconds B. 1.3 seconds C. 3.5 seconds D. 0.76 seconds

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Imagine that you are swinging back and forth a chain with a locket on the end. Assuming that you are on Earth so that gravity is constant at 9.81 meters/secondĀ², and you know that the chain is 43 centimeters long, what is the period of this simple pendulum? A. 13 seconds B. 1.3 seconds C. 3.5 seconds D. 0.76 seconds

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[T=2\pi \sqrt{L/g}\]
http://hyperphysics.phy-astr.gsu.edu/hbase/pend.html
That link backs up souvik's response. It might also help you find other information.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Thank you both :) @theEric that link was very helpful Grazie
You're welcome! And I guess that equation only works for a "simple pendulum."
any problem? @SNIIX18
yahh i cant wrap my finger around this problem its kind of difficult
this question?
yes it's kind of difficult for me
what happened?
i just dont understand
|dw:1372793064271:dw|
|dw:1372793264146:dw|
i divide the force mg into two component one is mgcos(theta) and mssin(theta) any question?
no i understand know i was doing everything wrong Thank you for the help
ok....

Not the answer you are looking for?

Search for more explanations.

Ask your own question