anonymous
  • anonymous
Given the relation {(7, 3), (-6, 1), (4,9), (-2, 5)} find the range of its inverse. A. (1, 3, 5, 9) B. There is no inverse. C. (-6, -2, 4, 7) D. There is no range
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1.) Find the Inverse of the relation 2.) Find the Range (x, y) x = domain y = range
mathstudent55
  • mathstudent55
In an inverse, the domain becomes the range and the range becomes the domain. The range of the inverse relation is the domain of the relation.
anonymous
  • anonymous
So is the answer A.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Nope.
anonymous
  • anonymous
a.) would be the range of the original relation, not the inverse.
mathstudent55
  • mathstudent55
A is the range of the original relation.
anonymous
  • anonymous
^ yup :)
anonymous
  • anonymous
So is it C.
anonymous
  • anonymous
yup
anonymous
  • anonymous
Given: {(7, 3), (-6, 1), (4,9), (-2, 5)} Inverse: {(3, 7), (1, -6), (9,4), (5, -2)}
anonymous
  • anonymous
{BEST RESPONSE} for anyone?
anonymous
  • anonymous
@douglas12

Looking for something else?

Not the answer you are looking for? Search for more explanations.