• anonymous
If spine bone density is normally distributed in young women with a mean of 1.0 g/cm2 and a standard deviation of .10 g/cm2, then how many young women out of 100 would you expect to have bone densities less than .85 g/cm2?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • Jamierox4ev3r
probably not the majority because it is not close to the mean amount of 1.0, it is less than average
  • kropot72
The z-score for 0.85 g/cm^2 is found as follows: \[z=\frac{X-\mu}{\sigma}=\frac{0.85-1}{0.1}=-1.5\] From a normal distribution table the cumulative probability when z = -1.5 is 0.0668. Therefore the number of young women out of 100 expected to have bone densities less than 0.85 g/cm^2 is \[0.0668\times 100=you\ can\ calculate\]
  • mww
You must convert the problem into a standard N(0,1) form. \[x < 0.85g/cm^2 \] \[Z = \frac{ x - \mu }{ \sigma } \] is the transformation required with mean of 1 and sd of 0.1 \[Z = \frac{ x - \mu }{ \sigma } < \frac{ 0.85 - 1 }{ 0.1 } = -1.5\] So find Z<-1.5 on the tables which is 6.7% Multiply this by 100 to find the number of people.

Looking for something else?

Not the answer you are looking for? Search for more explanations.