• anonymous
what is the general proof to the theorem in signals. i.e -"for any signal - discrete or continuous.. the condition for it to be periodic requires it to have a rational frequency"..? a particular case of this proof could be arrived by assuming sinusoidal curve. but that isn't general..
MIT 6.002 Circuits and Electronics, Spring 2007
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • KenLJW
Using the assumption of a linear circuit superposition applies. All signals can be expressed in a Fourier's Series therefore if it applies to one it applies to all. For none linear circuits as large base-emitter signal of a common emitter BJT circuit you must use another analysis.
  • anonymous
Actually the proof of this comes from sinusoidal signals itself. Any PERIODIC signal can be expressed as a sum of sine and cosine terms terms right? Yes, there are other condition(Drcihlet's conditions), but lets not go into that. So, if its true for one sinusoid, it must be true for other sinusoid since each one has a frequency which is an integer multiple of the harmonics frequency. So its must be true for that periodic signal since its a sum of all those periodic signals. So it is true for any periodic signal.

Looking for something else?

Not the answer you are looking for? Search for more explanations.