Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

  • 2 years ago

neutronbalanceequation

  • This Question is Closed
  1. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    \[\newcommand\p\newcommand \p\dd [1] {\,\mathrm d#1} % infinitesimal \p\ve [1] {\boldsymbol#1} % vector \p\ints [3] {\int_{#1}{\dd #3}{#2}} % integral \p\dif {\operatorname\nabla} % differential operator \large{\begin{align} \frac 1{v(E)}&\frac{\dd\Phi(\ve r,E,\ve \Omega,t)}{\dd t}\\= &-\ve\Omega\cdot\dif\Phi(\ve r,E,\ve\Omega,t)-\Sigma_t(\ve r,E,\ve \Omega)\Phi(\ve r,E,\ve\Omega,t)\\ &+\chi(E)\ints{E'}{}{E}\ints{\Omega'}{\nu\Sigma_f(\ve r,E',\ve\Omega',t)}{\Omega'}\Phi(\ve r,E',\ve\Omega',t)\\ &+\ints{E'}{}{E'}\ints{\Omega'}{\Sigma_s(\ve r;E'\to E;\ve\Omega'\to\ve\Omega)\Phi(\ve r,E',\Omega',t)}{\Omega'} \end{align}}\]

  2. Luigi0210
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[ \LARGE \mathbb{\color{green}{AWESOME} \huge \star}\]

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy