samigupta8
  • samigupta8
if a,b,c>0 the minimum value of a/b+c + b/c+a + c/a+b is
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
shubhamsrg
  • shubhamsrg
Do you know the answer? Is it 3/2 ?
samigupta8
  • samigupta8
yaa
samigupta8
  • samigupta8
hw did u get it

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

shubhamsrg
  • shubhamsrg
I don;t know the orthodox method for this, but generally,I have learnt that the minimum occurs when a=b=c. I don't know the precise reasoning for it. But I am trying to find out. Anyways, for a=b=c, we get 3/2
shubhamsrg
  • shubhamsrg
@ganeshie8
shubhamsrg
  • shubhamsrg
Here is my attempt : => a/(b+c) + b/(c+a) + c/(a+b) + (b+c)/a + (c+a)/b + (a+b)/c - (b+c)/a - (c+a)/b - (a+b)/c [ a/(b+c) + (b+c)/a ]+ [ b/(c+a) + (c+a)/b ]+ [ c/(a+b) + (a+b)/c ] - [ (b+c)/a + (c+a)/b + (a+b)/c ] For this to be minimum, positive part should be minimum and negative part maximum => 6 - [ (b+c)/a + (c+a)/b + (a+b)/c ] => 6 - [ (b+c)/a +1+ (c+a)/b +1+ (a+b)/c +1 -3] => 6 - (a+b+c)(1/a + 1/b + 1/c) +3 => 9 - (a+b+c)(1/a + 1/b + 1/c) Thus we need to find maximum value of (a+b+c)(1/a + 1/b + 1/c) Now,[ (a+b+c) + (1/a + 1/b + 1/c) ] /2 >= sqrt [ (a+b+c)(1/a + 1/b + 1/c) ] For RHS to be maximum, LHS should be minimum, (a+b+c) + (1/a + 1/b + 1/c) = (a+1/a) + (b+1/b) + (c + 1/c) Minimum vale of this is 6 hence 3>=sqrt [ (a+b+c)(1/a + 1/b + 1/c) ] or 9 >=(a+b+c)(1/a + 1/b + 1/c) My answer then comes out to be 9-9 or 0 hmm, where did I go wrong ?
RadEn
  • RadEn
yes, it is 3/2 http://en.wikipedia.org/wiki/Nesbitt%27s_inequality
samigupta8
  • samigupta8
but raden i didn't get it
shubhamsrg
  • shubhamsrg
See the link he has posted.
samigupta8
  • samigupta8
bt i didn't undrstand it
shubhamsrg
  • shubhamsrg
I was thinking about it and I cam up with a graphical solution. Let us say a+b+c = k , where k is constant for a given a,b and c. We can surely say since a,b,c>0, then k>a ,b and c Now we can re-write our expression as b/(k-b) + a/(k-a) + c/(k-c) Let us consider the graph of x/(k-x) for x 0 always, hence f(x) is increasing. f"(x) = 2k/(k-x)^3 i.e. for x0 which means f(x) should be concave upward in the given domain. Graph will be something like this : |dw:1373875648458:dw|
shubhamsrg
  • shubhamsrg
Now let us consider 3 points on f(x), a,b, and c. Without the loss of generality, let us assume a= 1/2 or b/(k-b) + a/(k-a) + c/(k-c) >= 3/2 hence its minimum vale is 3/2 and hence our answer. hope I could make this clear.

Looking for something else?

Not the answer you are looking for? Search for more explanations.