Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

jakethekicker

  • one year ago

Which of the following is a possible equivalence that can be used in a conversion? ten cubed kL over one L ten squared daL over one L ten to the negative second power L over one cL ten to the negative first power L over one mL

  • This Question is Closed
  1. Claflamme3
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Let me look this one up

  2. Claflamme3
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    the third one

  3. mr.singh
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    agree with @Claflamme3

  4. theEric
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Hi! You have your answer, which I agree with, but I want to explain how you'd know that! Firstly, when you convert to a different unit, the value - what the number represents - doesn't change. You're actually multiplying the number by \(1\). Its a fraction, where the top and bottom are equal. I'll derive a simple conversion that I hope you agree with. Even if you're in the stubborn U.S., it's important to know the metric system. Like, 1 meter is one hundred centimters. In math, \(1\ [m]=100\ [cm]\) This would imply that, by dividing by 1 meter,\[\frac{1\ [m]}{1\ [m]}=\frac{100\ [cm]}{1\ [m]}\]\[\qquad\qquad\Downarrow\]\[\frac{\cancel{1\ [m]}}{\cancel{1\ [m]}}=\frac{100\ [cm]}{1\ [m]}\]\[\qquad\qquad\Downarrow\]\[1=\frac{100\ [cm]}{1\ [m]}\] That sort of thing is always good to know for unit conversions. And reversing that on your multiple choices will check to see if they are good! \[\frac{10^3\ [kL]}{[L]}\qquad\rightarrow\qquad 10^3\ [kL]\overset{?}{=}[L]\] \[\frac{10^2\ [daL]}{[L]}\qquad\rightarrow\qquad 10^2\ [daL]\overset{?}{=}[L]\] \[\frac{10^{-2}\ [L]}{[cL]}\qquad\rightarrow\qquad 10^{-2}\ [L]\overset{?}{=}[cL]\] \[\frac{10^{-1}\ [L]}{[mL]}\qquad\rightarrow\qquad 10^{-1}\ [L]\overset{?}{=}[mL]\] And note that \(\Large 10^{-1}=\frac{1}{10^1}\) and that \(\Large 10^{-2}=\frac{1}{10^2}\), just by the meaning of negative exponents. Just for my own fun... \[\frac{10^3\ [kL]}{[L]}\qquad\rightarrow\qquad 10^3\ [kL]\cancel{=}[L]\] \[\frac{10^2\ [daL]}{[L]}\qquad\rightarrow\qquad 10^2\ [daL]\cancel{=}[L]\] \[\frac{10^{-2}\ [L]}{[cL]}\qquad\rightarrow\qquad 10^{-2}\ [L]{=}[cL]\qquad\huge \checkmark \] \[\frac{10^{-1}\ [L]}{[mL]}\qquad\rightarrow\qquad 10^{-1}\ [L]\cancel{=}[mL]\]

  5. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.