anonymous
  • anonymous
Determine whether the function is one-to-one. f(x)=(x-5)^3
History
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Jasmineflvs
  • Jasmineflvs
Horizontal Line Test • If some horizontal line intersects the graph of the function more than once, then the function is not one-to-one. • If no horizontal line intersects the graph of the function more than once, then the function is one-to-one. What are One-To-One Functions? Algebraic Test Definition 1. A function f is said to be one-to-one (or injective) if f(x1) = f(x2) implies x1 = x2. Lemma 2. The function f is one-to-one if and only if 8x1, 8x2, x1 6= x2 implies f(x1) 6= f(x2). Examples and Counter-Examples Examples 3. • f(x) = 3x − 5 is 1-to-1. • f(x) = x2 is not 1-to-1. • f(x) = x3 is 1-to-1. • f(x) = 1 x is 1-to-1. • f(x) = xn − x, n > 0, is not 1-to-1. Proof. • f(x1) = f(x2) ) 3x1 − 5 = 3x2 − 5 ) x1 = x2. In general, f(x) = ax − b, a 6= 0, is 1-to-1. • f(1) = (1)2 = 1 = (−1)2 = f(−1). In general, f(x) = xn, n even, is not 1-to-1. • f(x1) = f(x2) ) x31 = x32 ) x1 = x2. In general, f(x) = xn, n odd, is 1-to-1. • f(x1) = f(x2) ) 1 x1 = 1 x2 ) x1 = x2. In general, f(x) = x−n, n odd, is 1-to-1. • f(0) = 0n − 0 = 0 = (1)n − 1 = f(1). In general, 1-to-1 of f and g does not always imply 1-to-1 of f + g. Properties of One-To-One Functions Properties Properties If f and g are one-to-one, then f  g is one-to-one. Proof. f  g(x1) = f  g(x2) ) f(g(x1)) = f(g(x2)) ) g(x1) = g(x2) ) x1 = x2. Examples 4. • f(x) = 3x3 − 5 is one-to-one, since f = g  u where g(u) = 3u − 5 and u(x) = x3 are one-to-one. • f(x) = (3x − 5)3 is one-to-one, since f = g  u where g(u) = u3 and u(x) = 3x − 5 are one-to-one. • f(x) = 1 3x3−5 is one-to-one, since f = g  u where g(u) = 1 u and u(x) = 3x3 − 5 are one-to-one. 2
Jasmineflvs
  • Jasmineflvs
hope I helped
anonymous
  • anonymous
Yes many thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jasmineflvs
  • Jasmineflvs
no problem :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.