Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

A smooth surface of revolution is hyperbolic with equation z=a^2/r, the axis Oz pointing vertically downwards and r, θ and z being cylindrical polar coordinates. A small particle mass m slides on the interior of the surface. Calculate potential energy.

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
I'm not sure if I can help, but here are my thoughts that you and others can dispute. Is this potential energy just the potential energy due to gravity? It looks like mass is the only data on this particle. Then \(E_{potential}=m\ g\ z\) if you consider the particle to have \(0\ [J]\) at \(z=0\). And \(a^2\) and \(r\) are unknown? Then the potential energy could not be known, but could be put in terms of \(a\) and \(r\).
As for the surface, I guess \(a^2\) is constant and so we'd have a surface like|dw:1374850120317:dw|It's inside that, on the interior, I guess. That is because it is a hyperbola whose \(z\)-value does not depend on \(\theta\), but only \(r\). So \(\large z=\frac{a^2}{r}\) at every value for \(\theta\) in those cylindrical coordinates.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question