• gorica
A smooth surface of revolution is hyperbolic with equation z=a^2/r, the axis Oz pointing vertically downwards and r, θ and z being cylindrical polar coordinates. A small particle mass m slides on the interior of the surface. Calculate potential energy.
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
  • theEric
I'm not sure if I can help, but here are my thoughts that you and others can dispute. Is this potential energy just the potential energy due to gravity? It looks like mass is the only data on this particle. Then \(E_{potential}=m\ g\ z\) if you consider the particle to have \(0\ [J]\) at \(z=0\). And \(a^2\) and \(r\) are unknown? Then the potential energy could not be known, but could be put in terms of \(a\) and \(r\).
  • theEric
As for the surface, I guess \(a^2\) is constant and so we'd have a surface like|dw:1374850120317:dw|It's inside that, on the interior, I guess. That is because it is a hyperbola whose \(z\)-value does not depend on \(\theta\), but only \(r\). So \(\large z=\frac{a^2}{r}\) at every value for \(\theta\) in those cylindrical coordinates.

Looking for something else?

Not the answer you are looking for? Search for more explanations.