Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
gorica
Group Title
A smooth surface of revolution is hyperbolic with equation z=a^2/r, the axis Oz pointing vertically downwards and r, θ and z being cylindrical polar coordinates. A small particle mass m slides on the interior of the surface. Calculate potential energy.
 one year ago
 one year ago
gorica Group Title
A smooth surface of revolution is hyperbolic with equation z=a^2/r, the axis Oz pointing vertically downwards and r, θ and z being cylindrical polar coordinates. A small particle mass m slides on the interior of the surface. Calculate potential energy.
 one year ago
 one year ago

This Question is Closed

theEric Group TitleBest ResponseYou've already chosen the best response.0
I'm not sure if I can help, but here are my thoughts that you and others can dispute. Is this potential energy just the potential energy due to gravity? It looks like mass is the only data on this particle. Then \(E_{potential}=m\ g\ z\) if you consider the particle to have \(0\ [J]\) at \(z=0\). And \(a^2\) and \(r\) are unknown? Then the potential energy could not be known, but could be put in terms of \(a\) and \(r\).
 one year ago

theEric Group TitleBest ResponseYou've already chosen the best response.0
As for the surface, I guess \(a^2\) is constant and so we'd have a surface likedw:1374850120317:dwIt's inside that, on the interior, I guess. That is because it is a hyperbola whose \(z\)value does not depend on \(\theta\), but only \(r\). So \(\large z=\frac{a^2}{r}\) at every value for \(\theta\) in those cylindrical coordinates.
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.