anonymous
  • anonymous
Find exact value: sin(2 cos^-1(-3/11))
Trigonometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
there are infinite
anonymous
  • anonymous
how so?
zzr0ck3r
  • zzr0ck3r
cos(x) = -3/11 has infinite solutions

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zzr0ck3r
  • zzr0ck3r
forget what I said, they just want the one
zzr0ck3r
  • zzr0ck3r
cos^(-1)(-3/11) = 105.8 now sin(105.8) = .9622
zzr0ck3r
  • zzr0ck3r
4sqrt(7)/11
anonymous
  • anonymous
thank you!
anonymous
  • anonymous
\[put \cos^{-1} \left( \frac{ -3 }{ 11 } \right)=x\] \[\cos x=\frac{ -3 }{ 11 }\] hence x lies in second or third quadrant. \[\sin x=\sqrt{1-\left( \frac{ -3 }{11 } \right)^{2}}=\sqrt{1-\frac{ 9 }{121 }}=\frac{ \sqrt{112} }{11 }\] sin x can be positive or negative according as x lies in second or third quadrant. plug in sin 2x= 2 sin x cos x
anonymous
  • anonymous
wow thank you so much!
anonymous
  • anonymous
yw
zzr0ck3r
  • zzr0ck3r
woops I didn't notice the 2

Looking for something else?

Not the answer you are looking for? Search for more explanations.