Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Anybody can solve this?

Differential Equations
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

\[E _{p}=k _{e}\lambda R (x _{p}\int\limits\limits_{0}^{2\pi}\frac{ d \theta }{ (x _{p}^{2}-2Rx _{p} \cos \theta +R ^{2})^{3/2}}-R \int\limits\limits_{0}^{2\pi}\frac{ \cos \theta d \theta }{ (x _{p}^{2}-2Rx _{p}\cos \theta +R ^{2})^{3/2} })\]
I think it may have something to do with partial fractions. I need somebody to guide me through it

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

is this physics?
ok so, can I assume that the only variable is theta?
Yes, everything is constant except theta and cos theta.
ok give me a second to think
Take your time, but please don't just give me the answer. Guide me through it. It is not a homework assignment or anything. Just part of my afternoon physics thinking
\[E _{p}=k _{e}\lambda R (x _{p}\int\limits\limits_{0}^{2\pi}\frac{ d \theta }{ (x _{p}^{2}-2Rx _{p} \cos \theta +R ^{2})^{3/2}}-R \int\limits\limits_{0}^{2\pi}\frac{ \cos \theta d \theta }{ (x _{p}^{2}-2Rx _{p}\cos \theta +R ^{2})^{3/2} })\] We can combine the two integrals:\[ E _{p}=k _{e}\lambda R \int\limits\limits_{0}^{2\pi}\frac{ x_p-Rcos( \theta) d \theta }{ (x _{p}^{2}-2Rx _{p} \cos \theta +R ^{2})^{3/2}}\]
Then long division
or complex integration
complex would be easier
I don't know complex integration. I'm only about to start my highschool senior year. I will give it a shot at long division.
integration by parts would work too you would need two degrees of integration then notice they look the same
good luck I'll take a look later gtg to class
are you sure you didn't screw up deriving this integral?
Jajaja. I don't know. Take a look at it: I have a ring with uniform charge Q. Calculate the electric field at any point around the x-axis. |dw:1375329903540:dw| Well, I did it this way: \[\lceil dE _{p} \rceil=k _{e }\frac{ dQ }{ r ^{3} }\lceil r \rceil=k _{e }\frac{ dQ }{ r ^{3} }(\lceil y \rceil+\lceil x _{p}-R \cos \theta \rceil) \]\[dQ=\lambda ds= \lambda R d \theta\]One we integrate, the side with the y vector, will cancel because of symmetry, so in magnitude:\[E _{p}=\int\limits\limits_{0}^{2 \pi} k _{e}\frac{ \lambda R }{ r ^{3} }(x _{p}-R \cos \theta)d \theta=\int\limits\limits_{0}^{2 \pi} k _{e}\frac{ \lambda R }{ ((x _{p}-R \cos \theta)^{2} +R ^{2}\sin ^{2}\theta)^{3/2} }(x _{p}-R \cos \theta)d \theta \]The ceils just represent vetors.

Not the answer you are looking for?

Search for more explanations.

Ask your own question