Here's the question you clicked on:
kiimiilee
h
\(\bf sin(tan^{-1}(2))\\ tan(\theta) = 2 \implies tan^{-1}(2) = \theta\\ sin(tan^{-1}(2)) \implies sin(\theta)\\ \color{green}{tan(\theta) = 2 \implies \cfrac{\text{opposite}}{\text{adjacent}}\implies \cfrac{b}{a} \implies \cfrac{2}{1}}\\ \color{blue}{c^2 = a^2 + b^2 \implies c = \sqrt{a^2 + b^2} \implies c = \sqrt{5}}\\ sin(tan^{-1}(2)) \implies sin(\theta) \implies \cfrac{\text{opposite}}{\text{hypotenuse}} \implies \cfrac{b}{c} \implies \cfrac{\square?}{\square?} \)
well, what's the sine?
notice the sides, a, b and c there