PhoenixFire
  • PhoenixFire
Funtion Definitions *Need editor hold on*
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
PhoenixFire
  • PhoenixFire
If you define the folowing functions as such: \[f:[0,\infty )\rightarrow [0,\infty )\quad f\left( x \right) :=\sqrt { x } \\ g:[0,\infty )\rightarrow { R }\quad g\left( x \right) :=\sqrt { x }\] Is the composite \( f\circ g\) properly defined? I would think it is NOT as g(x) maps to all Real numbers, while the domain of f(x) is \([0,\infty)\).
zzr0ck3r
  • zzr0ck3r
R is codomain for the second function it maps to the Range which is [0,infinity)
zzr0ck3r
  • zzr0ck3r
its defined just fine

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

PhoenixFire
  • PhoenixFire
Ah, codomain not the range.
zzr0ck3r
  • zzr0ck3r
\[\sqrt{x}\ge0\] so \[\sqrt{\sqrt{x}}\] is fine
PhoenixFire
  • PhoenixFire
@zzr0ck3r Thanks, codomain always confuses me. But I got it now.
zzr0ck3r
  • zzr0ck3r
codomain is what you are allowed to map to, range is what you map to

Looking for something else?

Not the answer you are looking for? Search for more explanations.