anonymous
  • anonymous
integral of (v-2)dv/ v^2+2v-1
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\bf \int\limits_{}^{}\frac{ v-2 }{ v^2 + 2v-1 }dv\]Is this it? @melmel
anonymous
  • anonymous
\[\int\limits_{}^{} \frac{ v-2 dv }{ v ^{2}+ 2v -1}\]
anonymous
  • anonymous
yes

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
can you help me @genius12
anonymous
  • anonymous
@Callisto
anonymous
  • anonymous
Make the u-substitution: \(\bf u=v-2\) \(\bf \implies \frac{du}{dv}=1 \implies dv=du\) We now re-write the integral as:\[\bf \int\limits_{}^{}\frac{ u }{ (u+2)^2(2u+3) }du\]Now we use partial fractions method to solve the integral. So let's break this in to two fractions:\[\bf \int\limits_{}^{}\frac{ Au+B }{ (u+2)^2 }+\frac{ C }{ 2u+3 }du\]Now we solve for \(\bf A, B, C\):\[\bf (Au+B)(2u+3)+C(u+2)^2=u\]By setting \(\bf u=-\frac{3}{2}\), we get:\[\bf \frac{ C }{ 4 }=-\frac{ 3 }{ 2 } \implies C = -6\]Now by setting \(\bf u=0\), we get:\[\bf 3B=24 \implies B =8\]Now let's choose \(\bf u = 1\), which gives:\[\bf (A+8)(5)=55 \implies A+8 =11 \implies A = 3\]Now we re-write the integral as:\[\bf \int\limits_{}^{}\frac{ 3u+8 }{ (u+2)^2}+\frac{ -6 }{ 2u+3 }du=\int\limits_{}^{}\frac{ 3u+8 }{ (u+2)^2}du-\int\limits_{}^{}\frac{ 6 }{ 2u+3 }du\]
anonymous
  • anonymous
@melmel Do you understand what I did and can you carry on? Or do you still need me to continue further?
anonymous
  • anonymous
continue genius12
anonymous
  • anonymous
As you can see, the right integral with integrand 6/2u+3 can be evaluated easily but the left integral is a bit more difficult. To evaluate the left integral, we make another substitution: \[\bf m=u+2 \implies dm=du\]This also implies that:\[\bf 3u+8=3m+2\]Now we re-write the left more complicated integral as:\[\bf \int\limits_{}^{}\frac{ 3m+2 }{ m^2 } dm=\int\limits_{}^{} 3m^{-1}+2 m^{-2} dm=3\int\limits_{}^{}\frac{1}{m}dm+2\int\limits_{}^{}m^{-2} dm\]\[\bf = 3\ln|m|+(2(-m^{-1}))=3\ln|m|-2m^{-1}\]Now that we have evaluated the left integral, we now evaluate the right integral which is pretty easy:\[\bf \int\limits_{}^{}\frac{6}{2u+3}du=6\int\limits_{}^{}\frac{1}{2u+3}du=3\ln|2u+3|\]
anonymous
  • anonymous
Isnt there any easier method genius12??
anonymous
  • anonymous
Now we substitute everything back in to get everything in terms of 'v' again. Hence:\[\bf 3\ln|m|-2m^{-1}=3\ln|u+2|-2(u+2)^{-1}=3\ln|v|-2v^{-1}\]\[\bf 3\ln|2u+3|=3\ln|2(v-2)+3|=3\ln|2v+1|\]Now to put it all together we get:\[\bf \int\limits_{}^{}\frac{v-2}{v^2+2v-1}dv=3\ln|v|-2v^{-1}-3\ln|2v+1|+C\]
anonymous
  • anonymous
i dont think its even correct ? how u get to that integral with u=v-2 substitution u had (u+2)^2(2u+3) if we substitude back we get (v-2+2)^2(2(v-2)+3)= v^2(2v-4+3)=v^2(2v-1)=2v^3-v^2 doesnt seem same to what u had before substitution
anonymous
  • anonymous
i might've made a mistake somewhere since its 10:50 am and i havent even slept and i am fasting...
anonymous
  • anonymous
since first step is wrong , its all wrong ..
anonymous
  • anonymous
@litchlani If you had to solve this integral, it would work in the same way. @melmel Now knows the approach of how to do it. Making a numerical mistake isn't what's important here. When you know how to do something, you can do it yourself even if there is a mistake.
anonymous
  • anonymous
yeah true that , you would need partial fraction still , you just dont need that substitution at the begining , you probably should rewrite the bottom equation as (x+(1+2^(1/2)))(x+(1-2^(1/2))) then look for partial fractions and then u can solve the integral
anonymous
  • anonymous
@litchlani I notice the dumb mistake I made out of sleepiness lol. When I made the first u-substitution, I multiplied the stuff in the denominator instead of adding -.-
anonymous
  • anonymous
@melmel I made some wrong steps out of sleepiness especially my first step where I made the substitution, I incorrectly multiplied the factors in the denominator instead of adding lol. So don't follow the solution but still look at the steps because now you can figure out how to solve it yourself.
anonymous
  • anonymous
I ended up solving for the integral of (7v+2)/(2v^3+v^2) because of accidentally multiplying instead of adding when I made the first substitution. Regardless, never feel sad, stupid mistakes happen when your eyes are about to collapse. You should however like I mentioned already, take a look at the steps still judge how you can solve the integral yourself through similar steps because the idea will be the same.

Looking for something else?

Not the answer you are looking for? Search for more explanations.