anonymous
  • anonymous
ABC is an isosceles triangle with AB=BC. The circumcircle of ABC has radius 8. Given that AC is a diameter of the circumcircle, what is the area of triangle ABC?
Collaborative Statistics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1375617084417:dw|Note that angle B will be a right angle (which can be proved using the 'Angle at the center theorem'). We also note that this triangle is isosceles and and it's base is the diameter of the circle \(\bf AC=16\). And the height of the triangle is just the radius of the circle which is given to us as 8. Hence of the triangle is:\[\bf Area \ of \ \triangle ABC=\frac{ 16 \times 8 }{ 2 }=64 \ units^2\]
anonymous
  • anonymous
@fayaz803
CGGURUMANJUNATH
  • CGGURUMANJUNATH
64

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
true"genius" u have all concepts in ur finger tips!!!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.