anonymous
  • anonymous
Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. a = 7, b = 7, c = 5
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
B. A = 69°, B = 69°, C = 42°??
anonymous
  • anonymous
sounds good.
anonymous
  • anonymous
wrong

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Try Using cosine law
anonymous
  • anonymous
\[7^{2} = 7^{2} + 5^{2} - 2(7)(5)cosA\]
anonymous
  • anonymous
my answers need to be in degrees
anonymous
  • anonymous
you get \[cosA = \frac{ -25 }{ -70 }\] than do arc cosine. you get angle 69.07
anonymous
  • anonymous
i need degrees for a b n c ??
anonymous
  • anonymous
you get angles 41.8 and 69.07. again
anonymous
  • anonymous
A. A = 70°, B = 70°, C = 40° B. A = 69°, B = 69°, C = 42° C. A = 42°, B = 69°, C = 69° D. A = 69°, B = 42°, C = 69°
anonymous
  • anonymous
|dw:1375984676609:dw| ?
anonymous
  • anonymous
Try D.
anonymous
  • anonymous
have to go.
anonymous
  • anonymous
thanks
anonymous
  • anonymous
deff not 69 deg
anonymous
  • anonymous
Note that the triangle is isosceles:|dw:1375984026354:dw|
anonymous
  • anonymous
ok ? still confused
anonymous
  • anonymous
Now use the cosine law:\[\bf a^2=b^2+c^2-2bc \cos(A) \implies 5^2=7^2+7^2-2(7)(7)\cos(A)\]Note that 'A' is the angle opposite side BC. Now re-arrange and solve for cos(A):\[\bf \implies \cos(A)=\frac{-73}{-98}=0.7445 \implies \cos^{-1}(0.7445)=A=41.884 \ degrees\]
anonymous
  • anonymous
Now because the triangle is isosceles, the remaining two angles B and C are equal so we can find each of them by subtracting A from 180 and dividing the result by 2:\[\bf \angle B=\angle C=\frac{ 180 -41.884}{ 2 }=69.058 degrees\]Rounding off our results to the nearest degree we get:\[\bf \angle A =42 \ degrees\]\[\bf \angle B=\angle C=69 \ degrees\] @britbrat4290
anonymous
  • anonymous
@britbrat4290 So your answer is correct =]

Looking for something else?

Not the answer you are looking for? Search for more explanations.