• anonymous
find all points on the graph of r=2+costheta where tangent line is horizontal
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
This is essentially asking you to find where the derivative of r is horizontal AKA 0. \[r(\theta)'=(2 + \cos (\theta))' = -\sin(\theta)\] The translation by +2 simply moves the graph up and down so it doesn't affect the tangent. We are left with a negative (upside-down) sine graph. So where is... \[-\sin(\theta)=0??\] Let's look at a graph. Notice in the pic attachment the curve touches down to zero in increments of pi, forever. A generic way of saying this is that the graph of 2 + cos(theta) has horizontal tangents at k*pi where k is any integer (-1, 0, 1, 2, etc)

Looking for something else?

Not the answer you are looking for? Search for more explanations.