eujc21
  • eujc21
If the input current is of the form I_N sin(wt), of a parallel RLC circuit, determine the steady-state output voltage and the steady-state inductor current.
Engineering
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
eujc21
  • eujc21
So far just for the source being "IN" for voltage I have \[\frac{ dv_{out}^2 }{ dt^2 } + \frac{1}{RC}\frac{dV_{out}}{dt} +\frac{V_{out}}{R} - \frac{1}{C}\frac{dI_N}{dt} = 0\]
eujc21
  • eujc21
When given \[I_Nsin(\omega t) = (I_C + I_L + I_R)\sin(\omega t)\] I get stuck because I am unsure if I am suppose to derive for \[[I_Nsin(\omega t)]\]
eujc21
  • eujc21
|dw:1377484988879:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

KenLJW
  • KenLJW
for steady state conditions Z = R||sL||1/(sC) where s = j (2 PI/T) t =j w t V(t) out = I_N sin(w t) Z This works for steady state ie after all transients die out, its a result using Laplace Transforms.

Looking for something else?

Not the answer you are looking for? Search for more explanations.