If the input current is of the form I_N sin(wt), of a parallel RLC circuit, determine the steady-state output voltage and the steady-state inductor current.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If the input current is of the form I_N sin(wt), of a parallel RLC circuit, determine the steady-state output voltage and the steady-state inductor current.

Engineering
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

So far just for the source being "IN" for voltage I have \[\frac{ dv_{out}^2 }{ dt^2 } + \frac{1}{RC}\frac{dV_{out}}{dt} +\frac{V_{out}}{R} - \frac{1}{C}\frac{dI_N}{dt} = 0\]
When given \[I_Nsin(\omega t) = (I_C + I_L + I_R)\sin(\omega t)\] I get stuck because I am unsure if I am suppose to derive for \[[I_Nsin(\omega t)]\]
|dw:1377484988879:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

for steady state conditions Z = R||sL||1/(sC) where s = j (2 PI/T) t =j w t V(t) out = I_N sin(w t) Z This works for steady state ie after all transients die out, its a result using Laplace Transforms.

Not the answer you are looking for?

Search for more explanations.

Ask your own question