anonymous
  • anonymous
ah
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Isaiah.Feynman
  • Isaiah.Feynman
So looonngggg
anonymous
  • anonymous
before rationalize you can reduce the denominator.
mathstudent55
  • mathstudent55
Can you get rid of the parentheses in the denominator and combine like terms?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Isaiah.Feynman
  • Isaiah.Feynman
|dw:1377576699554:dw|
mathstudent55
  • mathstudent55
This is the problem. \(\dfrac{9}{(7 - 3\sqrt{3}) - (6 - 4\sqrt{3})} \) The first set of parentheses in the denominator are unnecessary, you can just drop them: \(=\dfrac{9}{7 - 3\sqrt{3} - (6 - 4\sqrt{3})} \) To get rid of the second set of parentheses, you distribute the negative sign by multiplying each term in the parentheses by -1. \(=\dfrac{9}{7 - 3\sqrt{3} - 6 + 4\sqrt{3}} \) Now, combine like terms in the denominator: \(=\dfrac{9}{1 + \sqrt{3}} \)
anonymous
  • anonymous
yes, 1+root3 will be new denominator , so now you can use rationalize to solve it
mathstudent55
  • mathstudent55
To rationalize a denominator of \( a + \sqrt{b} \), you multply it by \( a - \sqrt{b} \). That means you need to multiply the fraction by \( \dfrac{1 - \sqrt{3}}{1 - \sqrt{3}} \).
mathstudent55
  • mathstudent55
\( =\dfrac{9}{1 + \sqrt{3}} \times \dfrac{1 - \sqrt{3}}{1 - \sqrt{3}} \) \( =\dfrac{9( 1 - \sqrt{3} )}{(1 + \sqrt{3}) (1 - \sqrt{3}) } \) Now distribute the 9 in the numerator. Multiply out the denominator using the product of a sum and a difference pattern, which becomes the difference of two squares.

Looking for something else?

Not the answer you are looking for? Search for more explanations.