anonymous
  • anonymous
6500=5000(1.042)^x
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Find x?
anonymous
  • anonymous
yea
anonymous
  • anonymous
Use a logarithm.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i got it to 13=10(1.042)^x
anonymous
  • anonymous
Is it \(13 = 10 * 1.024^x\) ?
anonymous
  • anonymous
yea
anonymous
  • anonymous
i just dont remember how to solve for variables as exponents
anonymous
  • anonymous
Do you know about logarithms?
anonymous
  • anonymous
its been a long summer maybe
anonymous
  • anonymous
First, you must isolate \(1.024^x\)
anonymous
  • anonymous
\[6500=5000(1.042)^x\] \[\frac{6500}{5000}=1.042^x\] \[1.3=1.042^x\] \[log_{10}(1.3)=x*log_{10}(1.042)\] \[\frac{log_{10}(1.3)}{log_{10}(1.042)}=x\] \[x \dot{=}6.377\]
anonymous
  • anonymous
Then, when you have \(1.024^x = y\), you do this to find \(x\): \[x = \log_{1.024}(y)\]
anonymous
  • anonymous
@KeithAfasCalcLover , you're not supposed to just give away the answer.
anonymous
  • anonymous
i just needed to see it

Looking for something else?

Not the answer you are looking for? Search for more explanations.